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Abstract— In many problems of design of
mechanisms and multi-agent systems, the sys-
tem designer has control over the informa-
tion environment. What is the optimal design
given the goals of the system designer? We
discuss several ways of representing informa-
tion structures. Each representation simpli-
fies a particular class of optimization prob-
lems over information structures; we discuss
current and potential applications of these
representations.

I. Introduction

A central question for economics and for
multi-agent systems in computer science and
artificial intelligence, is how to design the rules
of engagement for agent interaction [1]. The
intersection between computer science and eco-
nomics has been particularly fruitful in pursu-
ing questions related to mechanism design. The
feedback between disciplines has gone in both
directions – the potential availability of highly
rational artificially intelligent agents (“machina
economicus” – a synthetic homo economicus –
in the language of Parkes and Wellman [1]) that
could participate in various types of markets
has motivated the study of more complex mech-
anism design settings [2], while insights from
mechanism design have guided AI researchers in
multi-agent systems problems, for example team
formation [3].

Mechanism design typically assumes the play-
ers’ information is given, and searches for rules
of the game that yield desired outcomes. In
many circumstances, however, the information
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environment itself is under the control of the de-
signer. This is of course particularly important
as the information environment can have a sub-
stantial impact on the outcome. Hajaj & Sarne
examine how e-commerce platforms can benefit
from withholding information from customers
about all the opportunities available to them [4].
Rochlin & Sarne consider teams of information-
gathering agents and show that restricting their
ability to share information can lead to im-
proved group outcomes [5]. In the deliberative
auction setting [6], where agents have the oppor-
tunity to acquire information about valuations
before entering a bidding process, Brinkman et
al. show that the dependence structures between
agents’ signals of the value of the item they
are bidding on can lead to qualitatively dif-
ferent equilibrium outcomes of the auction [7].
Chhabra et al study the welfare effects of the
cost and precision of information on product (or
match) quality provided to agents engaging in
costly search, and of competition between infor-
mation providers with different signal qualities
[8], [9]. Das & Li examine the relative effects of
common and private information about quality
in a two-sided matching model with costly in-
terviews [10].

In this line of computer science research, au-
thors usually compare specific information en-
vironments rather than consider how to sys-
tematically search the space of all information
environments so as to identify the best one. The
problem of designing the optimal informational
environment – introduced by Kamenica and
Gentzkow and often termed “Bayesian persua-
sion” [11] – has recently been studied in a variety
of settings in the economics literature. These
include Internet advertising [12], communication
in organizations [13], bank regulation [14], [15],



medical testing [16], medical research [17], gov-
ernment control of the media [18], entertainment
[19], and price discrimination [20].

In this paper, we discuss how various ways
of representing information can aid the afore-
mentioned problem of information design. We
also discuss potential applications to computer
science research. One important insight is that
viewing information as a discrete number of bits
often limits the power of information design.

Formally, given a state space Ω, an informa-
tional environment, or an information structure,
is a map π : Ω → ∆ (S) given some set of
signal realizations S. Identifying the optimal
information structure is a difficult computa-
tional problem if approached by brute force.
Given a state space Ω, the set of all information
structures is as large as (∆ (Ω))

|Ω|
.1 The main

goal of this paper is to give an overview of
how these types of optimization problems can
be simplified by a suitable way of representing
all information structures (conflating those that
are payoff equivalent). We discuss three such
representations, each of which is useful for a
particular class of problems.

The first approach represents information
structures as distributions of posterior beliefs.
Each signal realization induces a posterior belief
and hence an information structure gives rise to
a distribution of posterior beliefs. Moreover, any
distribution of posterior beliefs that on average
equals the prior can be induced by some infor-
mation structure [11]. Hence, whenever the op-
timization value depends only on the posterior
belief, the optimization problem can be recast
as a choice of a distribution of posterior beliefs.
This formulation of the problem has a nice geo-
metric interpretation that often provides ample
intuition about the solution, but the approach
does not scale well to large state spaces.

The second approach represents information

1Kamenica & Gentzkow show that it is without loss of
generality to set the cardinality of the signal realization
space to be the same as the cardinality of the state space.
Then, the set of all information structures has the same
cardinality as (∆ (Ω))|Ω| [11].

structures as convex functions. When the state
space is large but the value of the optimiza-
tion problem only depends on the mean of the
posterior distribution, one may wish to directly
optimize over the distribution of the mean. The
trouble, however, is that not every distribution
of posterior means that on average equals the
prior mean can be induced by an information
structure. Gentzkow and Kamenica character-
ize the set of feasible distributions of posterior
means by focusing on the integrals of the cumu-
lative distribution functions of the means [21].
This is always a convex function “sandwiched”
between the completely uninformative and the
fully informative information structure.

The third approach represents information
structures as partitions of Ω × [0, 1] [22]. This
formalization is useful when one considers games
where multiple agents provide information to a
third party or when one considers the problem
of allocating information across various agents.

II. Optimization problems

There is a state space Ω with a typical state
denoted ω. The prior on the state is some µ0 ∈
∆ (Ω). An information structure is a map π :
Ω → ∆ (S) given some signal realization space
S. Without loss of generality we can set |S| ≤
|Ω|.

Given some value function u (π), we consider
a problem of maximizing over all information
structures. The next two sections consider two
important special cases of such problems.

A. Value over posteriors

Given a prior µ0 and information structure π,
each possible signal realization s ∈ S leads to
a posterior belief µs via Bayes’ rule. Thus, an
information structure π induces a distribution
of posterior beliefs denoted 〈π〉 ∈ ∆ (∆ (Ω)).

In this subsection we consider optimization
problems where the value function can be writ-
ten as

u (π) = E〈π〉v (µs)

for some function v (·).



Many situations lead to such value functions.
For example, it might be the case that the opti-
mization problem is faced by some“Sender”who
wishes to influence the action a ∈ A of a “Re-
ceiver”. In that case v (µ) = Eµ [w (a∗ (µ) , ω)]
where w (a, ω) is Sender’s objective function and
a∗ (µ) is Receiver’s optimal action when her
belief is µ.

Or, consider a situation where a single agent
chooses what costly information to obtain prior
to taking her action in order to maximize some
w (a, ω). If the cost of acquiring information
π can be written as c (π) = E〈π〉k (µ), then
v (µ) is simply W (µ) − k (µ) where W (µ) ≡
maxa Eµ [w (a, ω)]. Gentzkow and Kamenica dis-
cuss the cases when c (π) can be decomposed
this way [23]. These include those where the cost
of information is proportional to the reduction
in entropy [24].

Whenever the value function can be written
as u (π) = E〈π〉v (µ), there is a geometric way
of approaching the problem of maximizing over
π. Kamenica and Gentzkow show that for any
τ ∈ ∆ (∆ (Ω)) such that Eτ [µ] = µ0 there exists
a π s.t. τ = 〈π〉 [11]. This representation of all
information structures as the set of all distri-
butions of posteriors that on average equal the
mean implies that the value of the optimization
must be V (µ0) where V is the concavification
of v. A concavification of a function f is the
smallest concave function everywhere above f .
This result is depicted in Figure 1.

We now turn to some applications of this
concavification approach. Lazear examines the
question of when police, with limited resources,
should announce the roads they are planning
to patrol versus keeping them secret in order
to best deter speeding [25]. This problem is
equivalent to testing in educational settings
or when and what to audit to minimize tax
fraud. Lazear’s analysis, however, only com-
pares revealing the relevant information versus
not revealing it. The concavification approach
shows, however, that partial information re-
vealed through a stochastic signal always dom-
inates full revelation; moreover, it dominates
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Fig. 1: The concavification of v gives the value
of the optimization V (µ)

no revelation unless the police resources are
sufficiently large. This observation highlights the
fact that viewing information in terms of a
deterministic number of bits entails a conse-
quential loss of generality.

In computer science, questions related to the
optimal deployment of limited resources for
problems in security, under the umbrella of
“Stackelberg Security Games” have been the
subject of recent study. Algorithms that solve
for Bayesian Stackelberg equilibria have been a
key to deployment in large-scale settings, includ-
ing officers at airports [26], and air marshals on
flights [27]. Rabinovich et al have recently put
forward proposals based on the Bayesian per-
suasion approach to Stackelberg Security Games
[28]. This is a potentially fertile area for further
research on information structures.

Another possible application relates to the
problem of active learning in machine learning.
The idea of active learning is simply that, when
building a learning model, instead of receiv-
ing the training set complete with labels, with
examples in the form (xi, yi), one can query
a (potentially noisy) oracle for the label (yi)
corresponding to xi. Most work on active learn-
ing has focused on budgeted models or sample
complexity, but there has been some work on
cost-sensitive active learning [29] and on so-
called “proactive learning” [30] where there are
multiple noisy oracles that may have different



costs. Reasoning about information structures
directly would allow one to approach the prob-
lem of exemplar construction – if one has the
power to construct an xi to best achieve some
goal, instead of picking from a menu of avail-
able examples, what should one construct? Of-
ten there are costs associated with constructing
training examples, and it costs more to build
more accurate training examples – for exam-
ple, in constructing manufacturing designs for
testing, the more realistic the design, the more
expensive it is to construct, but the better it
models the real-world performance.

The concavification approach described here,
however, is of limited use when the state space
is large. We now turn to a representation that
can be useful when the state space is large, as
long as the value function can be written as a
function of posterior means.

B. Value over posterior means

Now suppose that ω is a random variable. In
this case, it will be more convenient to associate
each distribution over Ω with its cumulative
distribution function (cdf). Thus we denote the
prior by F0 and (given an information struc-
ture) the posterior induced by signal s by Fs.
Moreover, we let m0 denote the prior mean
and ms the mean of Fs. Since each information
structure induces a distribution of posteriors, it
also induces a distribution over posterior means.
Let Gπ : R → [0, 1] denote the (cdf of the) dis-
tribution of posterior means induced by signal
π.

In this subsection we examine cases where the
value function can be written as

u (π) = EGπ
v (ms)

for some function v (·).
First note that the concavification of v does

not yield the solution to this maximization prob-
lem because not every distribution of posterior
means that on average equals m0 can be induced
by an information structure. To classify the
set of feasible distributions, Gentzkow and Ka-
menica [21], associate with each π the integral

of Gπ, i.e., cπ (x) =
∫ x
0
Gπ (t) dt. If a function cπ

is thus obtained from π we say that π induces
cπ.

We illustrate this definition with some ex-
amples. Suppose that F0 is uniform. Consider
a totally uninformative signal π. This signal
induces a degenerate distribution of posterior
means always equal to m0 = 1

2 . Hence, Gπ is a
step function equal to 0 below 1

2 and equal to 1
above 1

2 . The induced convex function cπ is thus
flat on

[
0, 1

2

]
and then linearly increasing, with

a slope of 1, from 1
2 to 1. At the other extreme,

consider a fully informative signal π that fully
reveals the state. In that case, each posterior has
a degenerate distribution with all the mass on
the true state and thus Gπ = F0. Since F0 is
uniform, Gπ is linear, and thus cπ is quadratic:
cπ (x) = 1

2x
2. Finally, consider a “partitional”

signal P that gives a distinct signal realization
depending on whether the state is in

[
0, 1

2

]
, or(

1
2 , 1
]
. Then, GP is a step function and cP is

piecewise-linear. Figure 2 depicts these CDFs
and functions.

If we consider an arbitrary signal π, what
can we say about cπ? Since Gπ is a CDF
and thus increasing, cπ as its integral must
be convex. Moreover, since any signal π is a
garbling of π, we must have that Gπ is a mean-
preserving spread of Gπ (Blackwell 1953); hence,
cπ ≥ cπ by Rothschild and Stiglitz (1970).
Similarly, since π is a garbling of π, Gπ is a
mean-preserving spread of Gπ and thus cπ ≥
cπ. Moreover, these characteristics are not only
necessary; they are also sufficient for some c to
be induced by an information structure:

Proposition 1: (Gentzkow and Kamenica
[21]) Given a function c : [0, 1]→ R, there exists
an information structure that induces it if and
only if it is convex and cπ (x) ≥ c (x) ≥ cπ (x)
∀x ∈ [0, 1].

Proposition 1 thus provides us with a simple
characterization of the distributions of posterior
means that can be induced by an information
structure. Figure 3 contrasts the space of func-
tions induced by all random variables whose ex-
pectation is the prior mean (any convex function
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Fig. 3: Feasible distributions of posterior means
vs. all random variables with E [m̃] = m0

in the lightly shaded area) with the subset of
those that represent feasible distributions of the
posterior means (any such function in the darker
area in the bottom right).

This representation could be used to solve a
wide class of optimization problems. For exam-
ple, an active area of research where we care
about a function of the mean of the posterior
is costly search. In costly search models with
uncertain information available to the searcher,
information provision can be thought of as a
stage within a larger game. For example, Board
and Lu consider a setting where a buyer is
searching for an item and each seller can choose
its own information disclosure policy [31]. This

idea could also inform the work on algorithmic
problems faced by matching platforms or infor-
mation intermediaries in search markets, who
must decide what type of information to provide
to participants and at what cost. In one-sided
models (e.g. Chhabra et al [8]), the platform
may be able to capture surplus through adver-
tising, for example, and may wish to choose
an information structure that maximizes social
welfare. In two-sided models (and more general
k-sided ones like those studied by Nahum et
al), the information intermediary is serving as
a matchmaker, and may wish to create the best
overall set of teams under uncertainty about
future arrivals [32]. Nahum et al show that
more information is not necessarily better in
their setting, but do not determine the optimal
information structure.

III. Games of information provision

Now, instead of an optimization problem, con-
sider a game where a number of agents choose
what information to provide about some com-
mon state of the world ω ∈ Ω. In this case,
modeling the information provided by agent i
simply as πi : Ω→ ∆ (Ω) is no longer sufficient,
since it does not specify the correlation of signal
realizations from different agents given the state.
For example, if we have πi = πj we do not know
whether the information provided by those two
agents is redundant or not. Instead, Gentzkow
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and Kamenica define a signal as a finite par-
tition of Ω × [0, 1] s.t. π ⊂ S, where S is the
set of non-empty Lebesgue measurable subsets
of Ω× [0, 1] [22]. Any element s ∈ S is a signal
realization.

With each signal π we associate an S-valued
random variable that takes value s ∈ π when
(ω, x) ∈ s. Let p(s|ω) = λ ({x| (ω, x) ∈ s}) and
p (s) =

∑
ω∈Ω p (s|ω)µ0 (ω) where λ (·) denotes

the Lebesgue measure. For any s ∈ π, p (s|ω)
is the conditional probability of s given ω and
p (s) is the unconditional probability of s.

This representation of information has the
benefit of inducing an algebraic structure on the
set of signals. The structure allows us to “add”
signals together and thus easily examine their
joint information content. Let Π be the set of
all signals. Let D denote the refinement order
on Π, that is, π1 D π2 if every element of π1 is
a subset of an element of π2. The pair (Π,D) is
a lattice. The join π1 ∨ π2 of two elements of Π
is defined as the supremum of {π1, π2}.

Note that π1 ∨ π2 is a signal that consists
of signal realizations s such that s = s1 ∩ s2

for some s1 ∈ π1 and s2 ∈ π2. Hence, π1 ∨ π2

is the signal that yields the same information
as observing both signal π1 and signal π2. In
this sense, the binary operation ∨ “adds” signals
together. The join of two signals is illustrated in
Figure 4.

With this representation of information struc-

tures, one can not only study games of infor-
mation provision but also ask questions about
how to allocate information across individuals in
order to have specific coalitions of those individ-
uals have specific information. This could have
immediate application to problems in multi-
agent teams, including that of how to optimize
multi-agent search teams in the spirit of Rochlin
and Sarne [5]. It could also be applied to the
design of deliberative auctions [33], [7], in order
to find the signal structure for agents that best
serves the auction designer’s purpose.

IV. Conclusion

The design of the information environment is
often as important as mechanism design in de-
termining how the rules of interaction affect the
outcomes of multi-agent systems, from economic
markets to robot teams. There have been recent
developments within economics that enhance
our understanding of the various ways to think
about the space of information structures. We
have summarized three distinct representations
of information in this paper, highlighting the
types of problems that they make tractable,
and speculating about possible applications to
problems at the intersection of computer science
and economics. In addition to solving specific
existing problems, having these tools available
may enable the community to engage with new
models and computational questions.
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